
Related-key Cryptanalysis of the Full AES-192
and AES-256

Alex Biryukov and Dmitry Khovratovich

University of Luxembourg
29 May 2009

Abstract. In this paper we present two related-key attacks on the full
AES. For AES-256 we show the first key recovery attack that works
for all the keys and has complexity 2119, while the recent attack by
Biryukov-Khovratovich-Nikolić works for a weak key class and has higher
complexity. The second attack is the first cryptanalysis of the full AES-
192. Both our attacks are boomerang attacks, which are based on the
recent idea of finding local collisions in block ciphers and enhanced with
the boomerang switching techniques to gain free rounds in the middle.

1 Introduction

The Advanced Encryption Standard (AES) [7] — a 128-bit block cipher, is one
of the most popular ciphers in the world and is widely used for both commercial
and government purposes. It has three variants which offer different security
levels based on the length of the secret key: 128, 192, 256-bits. Since it became
a standard in 2001 [1], the progress in its cryptanalysis has been very slow. The
best results until 2009 were attacks on 7-round AES-128 [8,9], 10-round AES-
192 [4,11], 10-round AES-256 [4,11] out of 10, 12 and 14 rounds respectively.
The two last results are in the related-key scenario.

Only recently there was announced a first attack on the full AES-256 [5].
The authors showed a related-key attack which works with complexity 296 for
one out of every 235 keys. They have also shown practical attacks on AES-256
in the chosen key scenario, which demonstrates that AES-256 can not serve as
a replacement for an ideal cipher in theoretically sound constructions such as
Davies-Meyer mode.

In this paper we further improve these results and present the first related-key
attack on AES-256 that works for all the keys and has a better complexity (2119

data and time). We also develop the first related key attack on the full AES-192.
In both attacks we minimize the number of active S-boxes in the key-schedule
(which caused the previous attack on AES-256 to work only for a fraction of
all keys) by using a boomerang attack [12] enhanced with boomerang switching
techniques. We find our boomerang differentials by searching for local collisions
in a cipher. Complexities of our attacks and comparison with the best previous
attacks are given in Table 1.



This paper is structured as follows: In Section 2 we develop the idea of local
collisions in the cipher and show how to construct optimal related-key differen-
tials for AES-192 and AES-256 . In Section 3 we briefly explain the idea of a
boomerang and an amplified boomerang attack. In Sections 5 and 6 we describe
an attack on AES-256 and AES-192, respectively.

Attack Rounds # keys Data Time Memory Source

192

Partial sums 8 1 2127.9 2188 ? [8]

Related-key rectangle 10 64 2124 2183 ? [4,11]

Related-key

amplified boomerang
12 4 2123 2176 2152 Sec. 6

256

Partial sums 9 256 285 2226 232 [8]

Related-key rectangle 10 64 2114 2173 ? [4,11]

Related-key differential 14 235 296 ∗ 296 ∗ 265 [5]

Related-key boomerang 14 4 2119 2119 277 Sec. 5

∗ — for each key.

Table 1. Best attacks on AES-192 and AES-256

2 Local collisions in AES

The notion of a local collision comes from the cryptanalysis of hash functions
with one of the first applications by Chabaud and Joux [6]. The idea is to inject
a difference into the internal state, causing a disturbance, and then to correct it
with the next injections. The resulting difference pattern is spread out due to
the message schedule causing more disturbances in other rounds. The goal is to
have as few disturbances as possible in order to reduce the complexity of the
attack.

In the related-key scenario we are allowed to inject difference into the key,
and not only into the plaintext as in the pure differential cryptanalysis. However
the attacker can not control the key itself and thus the attack should work for
any key pair with a given difference.

Local collisions in AES-256 are best understood on a one-round example
(Fig. 1). Here we need one active S-box and five non-zero byte differences in
the two subkeys. These five bytes split into two parts: one-byte disturbance and
four-byte correction.



Due to the key schedule the differences spread to other rounds. The AES key
schedule is mostly linear, so a sequence of several consecutive subkeys can be
viewed as a codeword of a linear code. This is the case, particularly, when a trail
does not have active S-boxes in the key schedule, which we try to achieve.

Let us figure out how to build an optimal trail for the key recovery attack.
Typically, a trail is better if it has fewer active S-boxes. Disturbance differences
thus form a codeword, which should have low weight. Simultaneously, correction
differences also must form a codeword, and the key schedule codeword is the sum
of the disturbance and the correction codewords. In further trails, the correction
codeword is constructed from the former one by just shifting four columns to
the right and applying the S-box-MixColumns expansion. Synchronization is
simple since the injection is made to the first row, which is not rotated by
ShiftRows. Otherwise, the task of synchronizing two codewords would have been
much harder and would have lead to high-weight codewords.

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

Fig. 1. A local collision.

An example of a good key-schedule
pattern for AES-256 (see Section 4 for
its formal description) is depicted in Fig-
ure 3 as a 4.5-round codeword. In the first
four key-schedule rounds the disturbance
codeword has only 9 active bytes, which
is the lower bound. We want to avoid ac-
tive S-boxes in the key schedule as long as
possible, so we start with a difference in
byte b0,0 and go backwards. Due to a slow
diffusion in the AES key schedule the dif-
ference affects only one more byte per
key schedule round. The correction col-
umn should be positioned four columns
to the right, and propagates backwards in
the same way. The last column in the first
subkey is active, so all S-boxes of the first
round are active as well, which causes un-
known difference in the first column. This
“alien” difference should be canceled by
the plaintext.

3 Boomerang and amplified boomerang attacks

In this section we describe two types of boomerang attacks and their use in the
related-key scenario.

A basic boomerang distinguisher [12] is applied to a cipher EK(·) which is
considered as a composition of two sub-ciphers: EK(·) = E1 ◦E0. The first sub-
cipher is supposed to have a differential α → β, and the second one to have a
differential γ → δ, with probabilities p and q, respectively. In the further text
the differential trails of sub-ciphers are called sub-trails.



In the further text we denote plaintexts by Xi, their encryption on E0 by Yi,
and the ciphertexts by Zi. The attack works as follows. An attacker takes a pair
of plaintexts (X0, X1) with the difference α and encrypts them. Then he adds
the difference δ to both ciphertexts Z0 and Z1 and decrypts them, which results
in new plaintexts X2 and X3. If X2⊕X3 = α, the four plaintexts form a quartet.
Differences δ in the two pairs (Z0, Z2) and (Z1, Z3) are converted by E−1

1 to a
difference γ in pairs (Y0, Y2) and (Y1, Y3) with probability q2. If Y0 ⊕ Y1 = β,
which has probability p, then the intermediate texts also form a quartet with
differences β and γ. With probability p the pair (Y2, Y3) is finally decrypted to
a pair with difference α. Therefore, a pair results in a quartet with probability
p2q2. If p2q2 > 2−n then we have a boomerang distinguisher. This is a chosen
plaintext – adaptive chosen ciphertext attack.

The amplified boomerang attack [10] (also called rectangle attack [2]) works
in a chosen-plaintext scenario but relies on a birthday paradox to provide in-
termediate difference switching, which results in very high data complexity and
complicated final filtering phase. In the amplified boomerang attack we compose
a number of plaintext pairs (X2i, X2i+1) with the difference α, encrypt and store
them. Out of N pairs, about pN pairs (Y2i, Y2i+1) come out of E0 with the dif-
ference β. Due to the birthday paradox, there are p2N2 ·2−n pairs (Y2i, Y2j) with
the difference γ among those so they form quartets (Y2i, Y2i+1, Y2j , Y2j+1) with
edges β and γ. With probability q2 both pairs in a quartet follow the differential
γ → δ in E1 and thus form a good quartet of ciphertexts (Z0, Z1, Z2, Z3) where
Z0 ⊕ Z2 = Z1 ⊕ Z3 = δ. We thus expect about p2q2N22−n good quartets.

The number of good ciphertext quartets is actually higher, since an attacker
may consider other β and γ (with the same α and δ). As a result, the number
Q of good quartets is expressed via amplified probabilities p̂ and q̂ as follows:

Q = p̂2q̂22−nN2,

where

p̂ =
√∑

β

P [α→ β]2; q̂ =
√∑

γ

P [γ → δ]2. (1)

For a random permutation the expected number of good quartets is N22−2n,
since every quartet should satisfy two n-bit conditions. Therefore, if p̂q̂ > 2−n/2

then we get a distinguisher.

Key recovery. The key-recovery process resembles that of a simple differential
cryptanalysis. The (amplified) boomerang distinguisher is usually extended to
a few more rounds in a truncated form. Then either a key is partially guessed
so that the distinguisher could be applied, or right and wrong quartets are sim-
ply detected among the ciphertexts and then each quartet proposes some key
candidates, which are then counted and ranked by their frequency of occurence.

3.1 Boomerang switch

Here we analyze the transition from the sub-trail E0 to the sub-trail E1, which
we call the boomerang switch. Evidently, the shorter the sub-trail, the higher is



the probability. Therefore, position of the switch is a tradeoff between the two
probabilities, that should minimize the overall complexity of the distinguisher.
Below we summarize the switching techniques that we use in the attacks.

Amplified probabilities. In the original boomerang attack paper by Wagner [12]
it was noted that instead of considering two differentials [α→ β] and [γ → δ] one
may build quartets from a set of differentials [α→ β′] and [γ′ → δ]. The number
of right quartets is then estimated via amplified probabilities p̂ and q̂ (1).

Related-key model. The boomerang attack can be carried on to the related-key
model, where the difference appears not only in the plaintext, but also in the
key. We thus consider four related keys KA,KB ,KC ,KD. The relation of the
key quartet may be simple, such as a fixed difference, or more complicated (e.g.,
a fixed difference in a subkey, or even an arbitrary function of the key). If there
is an active non-linear transformation in the key schedule (e.g. an active S-box)
then either its input or output becomes undetermined, otherwise the attack is
restricted to a weak key class.

Ladder switch. By default, a cipher is decomposed into rounds. However, such
decomposition may not be the best for the boomerang attack. We propose not
only to further decompose the round into simple operations but also to exploit
the existing parallelism in these operations. For example some bytes may be
independently processed. In such case we can switch in one byte before it is
transformed and in another one after it is transformed, see Fig. 2 for an illus-
tration.

An example is our attack on AES-192. Let us look at the differential trails
(see Fig. 8). There is one active S-box in round 7 of the lower trail in byte
b0,2. On the other hand, the S-box in the same position is not active in the
upper trail. If we would switch after ShiftRows in round 6, we would “pay” the
probability in round 7 afterwards. However, we switch all the state except b0,2
after MixColumns, and switch the remaining byte after the S-box application in
round 7, where it is not active. We thus do not pay for this S-box.

E0

E1

∆

0

0 0
0

∆

∆
∆∆

0
0

00

∆
∆

∆

Fig. 2. Ladder switch.



Feistel switch. Surprisingly, a Feistel round with an arbitrary function (e.g., an
S-box) can be passed for free in the boomerang attack (this was first observed in
the attack on cipher Khufu in [12]). Suppose two internal variables X and Y are
transformed to Z = X⊕f(Y ) and Y . Suppose also that in the boomerang attack
there is a differential before this transformation, which ends with a difference
∆X in X and ∆Y in Y , and a differential after this transformation, which starts
with ∆Z in Z and the same ∆Y in Y. Let these differentials be used in the
boomerang attack as follows.

Let cipher E0 cover the first differential and the Feistel transformation, while
E1 covers the second differential. Let two plaintexts PA and PB be encrypted
under E0 and their internal variables XA, XB , YA, YB satisfy the equations:

XA ⊕XB = ∆X ; YA ⊕ YB = ∆Y .

The ciphertexts CA and CB are modified to CC and CD, respectively, and then
decrypted. Then after E−1

1 we get a quartet of Y : (YA, YB , YC , YD) and a quartet
of Z: (ZA, ZB , ZC , ZD). If the differential holds the following equations hold:

ZA ⊕ ZC = ZB ⊕ ZD = ∆Z ; YA ⊕ YB = YB ⊕ YD = YC ⊕ YA = ∆Y . (2)

Then we obtain that YB = YC and YA = YD. Let us denote f(YA) by f1 and
f(YB) by f2. Then we get the following system of equations for Z and X:

ZA = XA ⊕ f1;
ZB = XB ⊕ f2;
ZC = XC ⊕ f2;
ZD = XD ⊕ f1;

Let us substitute these equations to (2), then we obtain:

XA ⊕ f1 ⊕XC ⊕ f2 = XB ⊕ f1 ⊕XD ⊕ f2 ⇔ XA ⊕XB = XC ⊕XD.

Therefore, we get difference ∆X in X again for free. This trick is used in the
switch in the subkey in the attack on AES-192.

S-box switch. This is similar to the Feistel switch, but costs probability only in
one of the directions. If the output of an S-box in a cipher has difference ∆ and if
the same difference ∆ comes from the lower trail, then propagation through this
S-box is for free on one of the faces of the boomerang. The other direction can
use amplified probability since specific value of the difference ∆ is not important
for the switch.

4 AES description

We expect that most of our readers are familiar with the description of AES and
thus point out only the main features of AES-256 that are crucial for our attack.



We denote the i-th 192-bit subkey (do not confuse with the 128-bit round
key) by Ki, i.e. the first (whitening) subkey is the first four columns of K0.
The last subkey is K7 in AES-256 and K8 in AES-192. The difference in Ki

is denoted by ∆Ki. Bytes of a subkey are denoted by kli,j , where i, j stand for
the row and column index in the standard matrix representation of AES and l
stands for the number of the subkey. Bytes of the plaintext are denoted by pi,j ,
and bytes of the internal state after the SubBytes transformation in round r are
denoted by ari,j . Let us also denote by bri,j byte in position (i, j) after the r-th
application of MixColumns. In boomerang trails, the difference between subkeys
in the upper trail is denoted by ∆Ki, and in the lower part by ∇Ki.

Features of AES-256. AES-256 has 14 rounds and a 256-bit key, which is two
times larger than the internal state. Thus the key schedule consists of only 7
rounds. One key schedule round consists of the following transformations:

ki,0 ← S(ki+1,7)⊕Ki,0 ⊕ Cr, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;
ki,4 ← S(ki,3)⊕Ki,4, 0 ≤ i ≤ 3;
ki,j ← ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ 7,

where S() stands for the S-box, and Cr — for the round-dependant constant.
Therefore, each round has 8 S-boxes.

Features of AES-192. AES-192 has 12 rounds and a 192-bit key, which is 1.5
times larger than the internal state. Thus the key schedule consists of 8 rounds.
One key schedule round consists of the following transformations:

Ki,0 ← S(Ki+1,5)⊕Ki,0 ⊕ Cr, 0 ≤ i ≤ 3;
Ki,j ← Ki,j−1 ⊕Ki,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 5.

Notice that each round has only four S-boxes.

5 Attack on AES-256

In this section we present a related key boomerang attack on AES-256.

5.1 The trail

The boomerang trail is depicted in Figure 7, and the actual values are listed in
Tables 3 and 2. It consists of two identical 7-round trails: the first one covers
rounds 1–7, and the second one covers rounds 8–14. The switching state is the
state A7 (internal state after the SubBytes in round 7) and a special key state
KS , which is the concatenation of the last four columns of K3 and the first four
columns of K4. Although there are active S-boxes in the first round of the key
schedule, we do not impose conditions on them. As a result, the difference in
column 0 of K0 is unknown yet.



Disturbance

Correction
+

Key schedule
=

Fig. 3. AES-256 key schedule codeword (4.5 key-schedule rounds).

Related keys We define the relation between four keys as follows (see Fig-
ure 4 for the illustration). For a secret key KA, which the attacker tries to find,
compute its second subkey K1

A and apply the difference ∆K1 to get a subkey
K1
B , from which the key KB is computed. The switch into the keys KC ,KD

happens between the 3rd and the 4th subkeys in order to avoid active S-boxes
in the key-schedule using the Ladder switch idea described above. We compute
subkeys K3 and K4 for both KA and KB . We add the difference ∇K3 to K3

A

and compute the upper half (four columns) of K3
C . Then we add the difference

∇K4 to K4
A and compute the lower half (four columns) of K4

C . From these eight
consecutive columns we compute the full KC . The key KD is computed from
KB in the same way.

K0 K1

∆K1

K1

KA

KB

∇K3

K4K3
KD

∇K4

K2 K3 K4 K5

∇K3

K4K3

KC

∇K4

Fig. 4. AES-256: Computing KB , KC , and KD from KA.



Finally, we point out that difference between KC and KD can be computed in
the backward direction deterministically since there would be no active S-boxes
till the first round. The secret key KA, and the three keys KB , KC , KD computed
from KA as described above form a proper related key quartet. Moreover, due
to a slow diffusion in the backward direction, as a bonus we can compute some
values in ∇Ki even for i = 0, 1, 2, 3 (Table 2). Hence given the byte value kli,j
for KA we can partly compute KB , KC and KD.

Internal state The plaintext difference is specified in 9 bytes. We require that
all the active S-boxes in the internal state should output the difference 0x1f so
that the active S-boxes are passed with probability 2−6. The only exception is
the first round where the input difference in seven active bytes is not specified.

Let us start a boomerang attack with a random pair of plaintexts that fit
the trail after one round. Active S-boxes in rounds 3 and 5 are passed with
probability 2−6 each so the overall probability is 2−24.

For the last S-box (round 7) we pay the probability only when going in the
forward direction due to an S-box switch. Indeed, assume that it gets a and
a+0x01 as input and outputs b and b+0x1f. When the boomerang comes back,
each of the two pairs has the same difference 0x1f in A7

0,0. Therefore, the S-box
get as output values b and b+0x1f and produces 0x01 as the input difference
with probability one.

The second part of the boomerang trail is quite simple. The top four active
S-boxes of the round 7 in E1 trail switch for free due to the Ladder switch (zero
difference coming from E0 in three places and the fourth one covered by an S-
box switch that we have just explained. Therefore, only five S-boxes contribute
to the probability, which is thus equal to 2−30. Finally we get one boomerang
quartet after the first round with probability 2−24−6−30−30−24 = 2−114.

5.2 The attack

The attack works as follows. Do the following steps 261 times:

1. Prepare a structure of plaintexts as specified below.
2. Encrypt it on keys KA and KB and keep the resulting sets SA and SB in

memory.
3. XOR ∆C to all the ciphertexts in SA and decrypt the resulting ciphertexts

with KC . Denote the new set of plaintexts by SC .
4. Repeat previous step for the set SB and the key KD. Denote the set of

plaintexts by SD.
5. For each guess of the key byte k0

1,7 of KA:
(a) Compute the key byte k0

1,7 of KB , KC and KD with Table 2. The key
difference ∆k0

0,0 is now completely determined.
(b) Compose from SC and SD all the possible pairs of plaintexts which are

equal in 72 bits pi,j , i, j > 0.



(c) For every remaining pair check if the difference in pi,0, i > 0 is equal on
both sides of the boomerang quartet (24-bit filter). Note that ∇k0

i,7 = 0
so ∆k0

i,0 should be equal for both key pairs (KA,KB) and (KC ,KD).

(d) Filter out the quartets whose difference can not be produced by active
S-boxes in the first round (one-bit filter per S-box per key pair) and
active S-boxes in the key schedule (one-bit filter per S-box), which is a
4 · 2 + 3 = 11-bit filter.

(e) The remaining quartets propose candidates for several key bytes (see
details below).

Each structure has all possible values in column 0 and row 0, and constant
values in the other bytes. Of 256 texts per structure we can compose 2112 ordered
pairs. Of these pairs 2112−8·7 = 256 pass the first round. Thus we expect one
right quartet per 2114−56 = 258 structures, and eight right quartets out of 261

structures.

Let us now compute the number of noisy quartets. About 240 pairs come
out of step 5b. The next two steps apply a 24+11 = 35-bit filter, so we get
261+40−35 = 266 candidate quartets in total. Each quartet proposes 24 candidates
for bytes k0,j , j < 4 of KA and KC each, 23 candidates for bytes ki,7, i = 0, 2, 3
of KA; i.e. 211 candidates for the 88 key bits. The probability that eight false
quartets propose the same candidate is 2(66+11)·8−88·7/8! ≈ 2−15, while the eight
right quartets propose correct candidates for all the key bytes. Even after we
repeat this loop 27 times (for each guess of k0

1,7) with high probability we are
left only with a single correct key candidate. We estimate the complexity of
the counting step as 277 time and memory. Hence the total time complexity is
bounded by the amount of data and is equal to 2119. Every quartet gives us 8
bits of information on each of the bytes k0,j , j < 4 and 7 bits of information
on each of the bytes of ki,7, i = 0, 2, 3. Two guesses of k0

1,7, that give the right
difference, are also indistinguishable. We thus recover 60 bits of KA (and 60 bits
of KC) with 2119 data and time and 277 memory.

The remaining part of the key can be found with many approaches. One is
to relax the condition on one of the active S-boxes in round 3 thus getting four
more active S-boxes in round 2, which in turn leads to a full-difference state
in round 1. The condition can be actually relaxed only for the first part of the
boomerang (the key pair (KA,KB)) thus giving a better output filter. For each
candidate quartet we use the key bytes, that were recovered at the previous
step, to compute ∆A1 and thus significantly reduce the number of keys that are
proposed by a quartet. We then rank candidates for the first four columns of K0

A

and take the candidate that gets the maximal number of votes. Since we do not
make key guesses, we expect that the complexity of this step does not exceed
the complexity of the previous step (2119). The remaining 100 bits of KA can be
found with the exhaustive search.



6 Attack on AES-192

The key schedule of AES-192 has better diffusion, so it is hard to avoid active
S-boxes in the subkeys. We construct an amplified-boomerang attack with two
sub-trails of 6 rounds each. However, the switching process and the key relations
are more complicated than for AES-256, so we describe them in more details.

6.1 The trail

The trail is depicted in Figure 8, and the actual values are listed in Tables 4
and 5.

Disturbance

Correction

Key schedule

+

=

E0

Disturbance

Correction

Key schedule

+

=

E1

Fig. 5. AES-192 key schedule codeword.

Related keys We define the relation between four keys similarly to the attack
on AES-256. Assume we are given a key KA, which the attacker tries to find.
We compute its subkey K1

A and apply the difference ∆K1 to get the subkey K1
B ,

from which the key KB is computed. Then we compute the subkeys K4
A and

K4
B and apply the difference ∇K4 to them. We get subkeys K4

C and K4
D, from

which the keys KC and KD are computed.
Now we prove that keys KA, KB , KC , and KD form a quartet, i.e. the

subkeys of KC and KD satisfy the equations Kr
C ⊕ Kr

D = ∆Kr, r = 1, 2, 3.
The only active S-box is positioned between K3 and K4, whose input is k3

0,5.
However, this S-box gets the same pair of inputs in both key pairs (see the
“Feistel switch” in Sec. 3.1). Indeed, if we compute ∇k3

0,5 from ∆K4, then it is
equal to ∆k3

0,5 = 0x01. Therefore, if the active S-box gets as input α and α⊕ 1
in KA and KB , respectively, then it gets a⊕1 and a in KC and KD, respectively.
As a result, K3

C⊕K3
D = ∆K3, the further propagation is linear, so the four keys

form a quartet.
Due to a slow diffusion in the backward direction, we can compute some

values in ∇Ki even for small i (Table 5). Hence given kri,j for KA we can partly
compute KB , KC and KD, which provides additional filtration in the attack.



Internal state The plaintext difference is specified in 10 bytes c

c

c

c
cc

c

cc

c , the dif-
ference in the other six bytes not restricted. The three active S-boxes in rounds
2–4 are passed with probability 2−6 each. In round 6 (the switching round) we
ask for the fixed difference only in a6

0,2, the other two S-boxes can output any
difference such that it is the same as in the second related-key pair. Therefore,
the amplified probability of round 6 equals to 2−6−2·3.5 = 2−13. We switch be-
tween the two trails before the key addition in round 6 in all bytes except b60,2,
where we switch after the S-box application in round 7 (the Ladder switch). This
trick allows us not to take into account the only active S-box in the lower trail
in round 7. The overall probability of the rounds 3–6 is 2−3·6−13 = 2−31.

The lower trail has 8 active S-boxes in rounds 8–12. Only the first four active
S-boxes are restricted in the output difference, which gives us probability 2−24

for the lower trail. The ciphertext difference is fully specified in the middle two
rows, and has 35 bits of entropy in the other bytes. More precisely, each ∇c0,∗ is
taken from a set of size 27, and all the ∇c3,∗ should be the same on both sides
of the boomerang and again should belong to a set of size 27. Therefore, the
ciphertext difference gives us a 93-bit filter.

6.2 The attack

We compose 273 structures of type c

c

c

c
cc

c

cc

c with 248 texts each. Then we encrypt
all the texts with the keys KA and KC , and their complements w.r.t. ∆P on
KB and KD. We keep all the data in memory and analyze it with the following
procedure:

1. Compose all candidate plaintext pairs for the key pairs (KA,KB) and (KC ,KD).
2. Compose and store all the candidate quartets of the ciphertexts.
3. For each guess of the subkey bytes: k0

0,3, k0
2,3, and k0

0,5 in KA; k7
0,5 in KA

and KB (see also Figure 6):
(a) Derive values for these bytes in all the keys from the differential trail.

Derive yet unknown key differences in ∆K0 and ∇K8.
(b) Filter out candidate quartets that contradict ∇K8.
(c) Prepare counters for yet unknown subkey bytes that correspond to active

S-boxes in the first two rounds and in the last round: k0
0,0, k0

0,1, k0
1,2,

k0
3,0 — in keys KA and KC , k8

0,0, k8
0,1, k8

0,2, k8
0,3 — in keys KA and KB ,

i.e. 16 bytes in total.
(d) For each candidate quartet derive possible values for these unknown

bytes and increase the counters.
(e) Pick the group of 16 subkey bytes with the maximal number of votes.
(f) Try all possible values of the yet unknown 9 key bytes in K0 and check

whether it is the right key. If not then go to the first step.

Right quartets. Let us first count the number of right quartets in the data.
Evidently, there exist 2128 pairs of internal states with the difference ∆A2.
The inverse application of 1.5 rounds maps these pairs into structures that we



have defined, with 248 pairs per structure. Therefore, each structure has 248

pairs that pass 1.5 rounds, and 273 structures have 2121 pairs. Of these pairs
2(121−31)·2−128 = 252 right quartets can be composed after the switch in the
middle. Of these quartets 252−2·24 = 16 right quartets come out of the last
round.

C F

F

FC
C

C

Fig. 6. Processing the subkey K0. “F” stands for bytes fixed by a guess, “C” —
for those that we count in the attack.

Steps 1–2. The first two steps are the most time-consuming part of the attack.
We propose the following approach based on the ideas of [3] and the fact that
pairs of plaintexts in a right quartet should belong to the same structure:

– Having encrypted the data, group all the ciphertexts into buckets according
to the 88-bit ciphertext filter: fixed differences in the middle rows, equal
differences in the last row.

– Prepare a two-dimensional table of plaintexts indexed by the indices of struc-
tures and a key.

– For every pair (CA, CC) of ciphertexts in a same bucket, that were encrypted
under KA and KC , respectively:
• Check if the pair satisfies the additional 5-bit filter in the differences

corresponding to the active S-boxes, where there are only 27 possibilities
per byte.

• If yes, detect structures SA and SC , to which the corresponding plain-
texts belong, and insert the pair in a table into a cell indexed by these
structures.

– Repeat the previous step for the keys KB and KD.
– For every pair of structures compose all the possible quartets of plaintexts.
– Put all the quartets into a hash table indexed by the two differences ∇c3,0.

Every bucket contains 2(121−88)·2−5 = 261 pairs. The overall number of pairs is
288+61 = 2149 pairs, or 23 pairs for a pair of structures. Therefore, we compose
23·2+73·2 = 2152 candidate quartets and then rank them according to ∇c3,0. We
thus get 214 groups of quartets each having 2138 candidate quartets.

Step 3(a-b) (filtering). We apply the ∇K8 filter and analyze 2138 candidate
quartets. We know k0

0,3 from the guess and ∆a1
0,3 from the trail, which gives us

an 8-bit filter on p0,3, and a 16-bit filter on the quartets. We also know k0
2,3 so

for both pairs of plaintexts in each of remaining 2122 quartets we compute ∆a1
2,3.

Since ∆a1
2,3 is a value in the column that should collapse to one non-zero byte



∆b10,1 by the MixColumns, we derive all the values on its diagonal and ∆b10,1.
Actually, the value of b10,1 can be restricted to two options, since we know k0

0,1,
∆k0

0,1, and ∆a2
0,1. For a given difference in the plaintext and provided with ∆A1

there exist 8 possible combinations of k0
0,1, k0

1,2, and k0
3,0, and the probability

that any of them matches the two options for a1
0,1 is 1/16. Therefore, the value

of ∆p2,3 restricts the other three differences on its diagonal by 3 + 4 = 7 bits.
One more bit comes from the fact that only half of ∆a1

0,1 can be converted into
∆a2

0,1. Therefore, we consider only 2122−2·(7+1) = 2106 quartets.

Step 3(c-e) (counting). Both pairs of plaintexts in a quartet propose key can-
didates: the first pair for KA and the second pair for KB . Each pair proposes
one candidate for (k0

0,1, k
0
1,2, k

0
3,0) and the two candidates for k0

0,0, so we have
210 candidates for 16 key bytes. The probability that 16 false quartets propose
the same key candidate can be upper bounded by 2116·16−128·15 = 2−64. The ex-
haustive search for the remaining 9 key bytes can be done with the complexity
272.

The overall time complexity is the number of quartets analyzed at Step 3
times the number of the key guesses. Now we point out that we do not have to
guess all 8 bits of k7

0,5 since we need only the output S-box difference. Therefore,
we try 23·8+2·7 = 238 key guesses, so the time complexity of the attack is 2138+38

= 2176, and the data complexity is 2123.

7 Conclusions

We presented related-key boomerang attacks on the full AES-192 and the full
AES-256. The differential trails for the attacks are based on the idea of finding
local collisions in the block cipher. We showed that optimal key-schedule trails
should be based on low-weight codewords in the key schedule. We also exploit
various boomerang-switching techniques, which help us to gain free rounds in
the middle of the cipher. However, both our attacks are still mainly of theoretical
interest and do not present a threat to practical applications using AES.

References

1. FIPS-197: Advanced Encryption Standard, November 2001, available at http://

csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
2. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling

the Serpent. In EUROCRYPT’01, volume 2045 of LNCS, pages 340–357. Springer,
2001.

3. Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and
rectangle attacks. In FSE’02, volume 2365 of LNCS, pages 1–16. Springer, 2002.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and
rectangle attacks. In EUROCRYPT’05, volume 3494 of LNCS, pages 507–525.
Springer, 2005.

5. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-
key attack on the full AES-256. In CRYPTO’09, LNCS. Springer, 2009. to appear.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


6. Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In
CRYPTO’98, volume 1462 of LNCS, pages 56–71. Springer, 1998.

7. Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES — the Advanced
Encryption Standard. Springer, 2002.

8. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In FSE’00,
volume 1978 of LNCS, pages 213–230. Springer, 2000.

9. Henri Gilbert and Marine Minier. A collision attack on 7 rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

10. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round MARS and Serpent. In FSE’00, volume 1978 of LNCS,
pages 75–93. Springer, 2000.

11. Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks on
reduced AES-192 and AES-256. In FSE’07, volume 4593 of LNCS, pages 225–241.
Springer, 2007.

12. David Wagner. The boomerang attack. In FSE’99, volume 1636 of LNCS, pages
156–170. Springer, 1999.

∆Ki

0

? 01 01 01 3e 3e 3e 3e
? 00 00 00 1f 1f 1f 1f
? 00 00 00 1f 1f 1f 1f
? 00 00 00 21 21 21 21

1

01 00 01 00 3e 00 3e 00
00 00 00 00 1f 00 1f 00
00 00 00 00 1f 00 1f 00
00 00 00 00 21 00 21 00

2

01 01 00 00 3e 3e 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 21 21 00 00

3

01 00 00 00 3e 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 21 00 00 00

4

01 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f
00 00 00 00 21 21 21 21

∇Ki

0

? ? ? ? ? ? ? 00
? ? ? ? 1f 1f 1f 00
? ? ? ? 1f 1f 1f 00
? ? ? ? 21 21 21 00

1

? 01 ? 00 ? ? 00 00
? 00 ? 00 1f 1f 00 00
? 00 ? 00 1f 1f 00 00
? 00 ? 00 21 21 00 00

2

? ? 00 00 ? 00 00 00
? ? 00 00 1f 00 00 00
? ? 00 00 1f 00 00 00
? ? 00 00 21 00 00 00

3

? 01 01 01 3e 3e 3e 3e
? 00 00 00 1f 1f 1f 1f
? 00 00 00 1f 1f 1f 1f
? 00 00 00 21 21 21 21

4

01 00 01 00 3e 00 3e 00
00 00 00 00 1f 00 1f 00
00 00 00 00 1f 00 1f 00
00 00 00 00 21 00 21 00

5

01 01 00 00 3e 3e 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 21 21 00 00

6

01 00 00 00 3e 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 21 00 00 00

7

01 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f
00 00 00 00 21 21 21 21

Table 2. Subkey difference in the AES-256 trail.

Disclaimer on colors. We intensively use colors in our figures in order to
provide better understanding on the trail construction. In figures, different colors
refer to different values, which is hard to depict in black and white. However,
we also list all the trail differences in the tables, so all the color information is



actually dubbed. Therefore, a reader may choose the view which is the best for
him.

∆P

? ? ? ?
? 00 00 00
? 00 00 00
? 00 00 00

∆A1

∇A7

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∆A2

∇A8

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A3

∇A9

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A4

∇A10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A1

∇A7

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A1

∇A7

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A1

∇A7

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A1

∇A7

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆C

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 3. Internal state difference in the AES-256 trail.

∆P

? ? 3e ?
1f 1f ? 1f
1f 1f 1f ?
? 21 21 21

∆A1

1f ? 00 1f
00 00 ? 00
00 00 00 ?
? 00 00 00

∆A2

00 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A3

00 1f 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A4

00 00 00 1f
00 00 00 00
00 00 00 00
00 00 00 00

∆A5

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A6

00 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∆A7

00 00 00 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A6

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A7

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A8

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A9

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A10

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A11

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A12

? ? ? ?
00 00 00 00
00 00 00 00
00 00 00 00

∆C

? ? ? ?
1f 1f 1f 1f
1f 1f 1f 1f
? ? ? ?

Table 4. Internal state difference in the AES-192 trail.



∆K0

00 3e 3e 3f 3e 01
00 1f 1f 1f 1f 00
00 1f 1f 1f 1f 00
? 21 21 21 21 00

∆K1

00 3e 00 3f 01 00
00 1f 00 1f 00 00
00 1f 00 1f 00 00
00 21 00 21 00 00

∆K2

00 3e 3e 01 00 00
00 1f 1f 00 00 00
00 1f 1f 00 00 00
00 21 21 00 00 00

∆K3

00 3e 00 01 01 01
00 1f 00 00 00 00
00 1f 00 00 00 00
00 21 00 00 00 00

∆K4

00 3e 3e 3f 3e 3f
00 1f 1f 1f 1f 1f
00 1f 1f 1f 1f 1f
? ? ? ? ? ?

∇K0

? ? ? 3e 3f 3e
? ? ? 1f 1f 1f
? ? ? 1f 1f 1f
? ? ? ? 21 21

∇K1

? ? 3f 01 3e 00
? ? 1f 00 1f 00
? ? 1f 00 1f 00
? ? ? 00 21 00

∇K2

? 3e 01 00 3e 3e
? 1f 00 00 1f 1f
? 1f 00 00 1f 1f
? ? 00 00 21 21

∇K3

3e 00 01 01 3f 01
1f 00 00 00 1f 00
1f 00 00 00 1f 00
? 00 00 00 21 00

∇K4

3e 3e 3f 3e 01 00
1f 1f 1f 1f 00 00
1f 1f 1f 1f 00 00
21 21 21 21 00 00

∇K5

3e 00 3f 01 00 00
1f 00 1f 00 00 00
1f 00 1f 00 00 00
21 00 21 00 00 00

∇K6

3e 3e 01 00 00 00
1f 1f 00 00 00 00
1f 1f 00 00 00 00
21 21 00 00 00 00

∇K7

3e 00 01 01 01 01
1f 00 00 00 00 00
1f 00 00 00 00 00
21 00 00 00 00 00

∇K8

3e 3e 3f 3e 3f 3e
1f 1f 1f 1f 1f 1f
1f 1f 1f 1f 1f 1f
? ? ? ? ? ?

Table 5. Subkey difference in the AES-192 trail.



SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

9

10

11

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

12

13

SubBytes

SubBytes

ShiftRows
MixColumns

SubBytes

0

4

5

6

14

RCSBAC

ShiftRows

SB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

SubBytes

SubBytes

ShiftRows
MixColumns

SubBytes

RCSBAC

ShiftRows
MixColumnsSB

7

6

5

4

3

1

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

7

8

3

2

1

2

Switch

2−24

2−30

E0

E1

3

4

8

7

Fig. 7. AES-256 E0 and E1 trails. Green ovals show an overlap between the two
trails where the switch happens.



ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

KS

KS

KS

SubBytes

SubBytes

SubBytes

SubBytes

ShiftRows
MixColumns

ShiftRows

SubBytes

SubBytes

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

KS

KS

KS

KS

KS

SubBytes

SubBytes

SubBytes

SubBytes

ShiftRows
MixColumns

ShiftRows
MixColumns

ShiftRows
MixColumns

SubBytes

SubBytes

SubBytes

1

2

3

4

5

7

8

9

10

11

12

7

ShiftRows
MixColumns

KS

KS

SubBytes

6

6

Switch

∆K0

∆K1

∆K2

∆K3

∆K4

∇K4

∇K5

∇K6

∇K7

∇K8

2−31

2−24

Fig. 8. AES-192 trail.


	Related-key Cryptanalysis of the Full AES-192 and AES-256
	Alex Biryukov and Dmitry Khovratovich

